1,535 research outputs found

    High-intensity sound in air saturated fibrous bulk porous materials

    Get PDF
    The interaction high-intensity sound with bulk porous materials in porous materials including Kevlar 29 is reported. The nonlinear behavior of the materials was described by dc flow resistivity tests. Then acoustic propagation and reflection were measured and small signal broadband measurements of phase speed and attenuation were carried out. High-intensity tests were made with 1, 2, and 3 kHz tone bursts to measure harmonic generation and extra attenuation of the fundamental. Small signal standing wave tests measured impedence between 0.1 and 3.5 kHz. High level tests with single cycle tone bursts at 1 to 4 kHz show that impedance increases with intensity. A theoretical analysis is presented for high-porosity, rigid-frame, isothermal materials. One dimensional equations of motion are derived and solved by perturbation. The experiments show that there is excess attenuation of the fundamental component and in some cases a close approach to saturation. A separate theoretical model, developed to explain the excess attenuation, yields predictions that are in good agreement with the measurements. Impedance and attenuation at high intensities are modeled

    Development and testing of cabin sidewall acoustic resonators for the reduction of cabin tone levels in propfan-powered aircraft

    Get PDF
    The use of Helmholtz resonators to increase the sidewall transmission loss (TL) in aircraft cabin sidewalls is evaluated. Development, construction, and test of an aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Laboratory and flight test results are discussed. Resonators (448) were located between the enclosure trim panels and the fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a propfan fundamental blade passage frequency (235 Hz). After flight testing on the PTA aircraft, noise reduction (NR) tests were performed with the enclosure in the Kelly Johnson Research and Development Center Acoustics Laboratory. Broadband and tonal excitations were used in the laboratory. Tonal excitation simulated the propfan flight test excitation. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. Increases in NR of up to 11 dB were measured. The effects of flanking, sidewall absorption, cabin absorption, resonator loading of trim panels, and panel vibrations are presented. Resonator and sidewall panel design and test are discussed

    Coupled ferro-antiferromagnetic Heisenberg bilayers investigated by many-body Green's function theory

    Full text link
    A theory of coupled ferro- and antiferromagnetic Heisenberg layers is developed within the framework of many-body Green's function theory (GFT) that allows non-collinear magnetic arrangements by introducing sublattice structures. As an example, the coupled ferro- antiferromagnetic (FM-AFM) bilayer is investigated. We compare the results with those of bilayers with purely ferromagnetic or antiferromagnetic couplings. In each case we also show the corresponding results of mean field theory (MFT), in which magnon excitations are completely neglected. There are significant differences between GFT and MFT. A remarkable finding is that for the coupled FM-AFM bilayer the critical temperature decreases with increasing interlayer coupling strength for a simple cubic lattice, whereas the opposite is true for an fcc lattice as well as for MFT for both lattice types.Comment: 17 pages, 6 figures, accepted for publication in J. Phys. Condens. Matter, missing fig.5 adde

    Magnetic and structural quantum phase transitions in CeCu6-xAux are independent

    Full text link
    The heavy-fermion compound CeCu6−x_{6-x}Aux_x has become a model system for unconventional magnetic quantum criticality. For small Au concentrations 0≤x<0.160 \leq x < 0.16, the compound undergoes a structural transition from orthorhombic to monoclinic crystal symmetry at a temperature TsT_{s} with Ts→0T_{s} \rightarrow 0 for x≈0.15x \approx 0.15. Antiferromagnetic order sets in close to x≈0.1x \approx 0.1. To shed light on the interplay between quantum critical magnetic and structural fluctuations we performed neutron-scattering and thermodynamic measurements on samples with 0≤x≤0.30 \leq x\leq 0.3. The resulting phase diagram shows that the antiferromagnetic and monoclinic phase coexist in a tiny Au concentration range between x≈0.1x\approx 0.1 and 0.150.15. The application of hydrostatic and chemical pressure allows to clearly separate the transitions from each other and to explore a possible effect of the structural transition on the magnetic quantum critical behavior. Our measurements demonstrate that at low temperatures the unconventional quantum criticality exclusively arises from magnetic fluctuations and is not affected by the monoclinic distortion.Comment: 5 pages, 3 figure

    Experimental Demonstration of an Electride as a 2D Material

    Get PDF
    Because of their loosely bound electrons, electrides offer physical properties useful in chemical synthesis and electronics. For these applications and others, nano-sized electrides offer advantages, but to-date no electride has been synthesized as a nanomaterial. We demonstrate experimentally that Ca2_2N, a layered electride in which layers of atoms are separated by layers of a 2D electron gas (2DEG), can be exfoliated into two-dimensional (2D) nanosheets using liquid exfoliation. The 2D flakes are stable in a nitrogen atmosphere or in select organic solvents for at least one month. Electron microscopy and elemental analysis reveal that the 2D flakes retain the crystal structure and stoichiometry of the parent 3D Ca2_2N. In addition, the 2D flakes exhibit metallic character and an optical response that agrees with DFT calculations. Together these findings suggest that the 2DEG is preserved in the 2D material. With this work, we bring electrides into the nano-regime and experimentally demonstrate a 2D electride, Ca2_2N

    Destabilizing effects of visual environment motions simulating eye movements or head movements

    Get PDF
    In the present paper, we explore effects on the human of exposure to a visual virtual environment which has been enslaved to simulate the human user's head movements or eye movements. Specifically, we have studied the capacity of our experimental subjects to maintain stable spatial orientation in the context of moving their entire visible surroundings by using the parameters of the subjects' natural movements. Our index of the subjects' spatial orientation was the extent of involuntary sways of the body while attempting to stand still, as measured by translations and rotations of the head. We also observed, informally, their symptoms of motion sickness

    Barkhausen Noise and Critical Scaling in the Demagnetization Curve

    Full text link
    The demagnetization curve, or initial magnetization curve, is studied by examining the embedded Barkhausen noise using the non-equilibrium, zero temperature random-field Ising model. The demagnetization curve is found to reflect the critical point seen as the system's disorder is changed. Critical scaling is found for avalanche sizes and the size and number of spanning avalanches. The critical exponents are derived from those related to the saturation loop and subloops. Finally, the behavior in the presence of long range demagnetizing fields is discussed. Results are presented for simulations of up to one million spins.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Finite driving rates in interface models of Barkhausen noise

    Full text link
    We consider a single-interface model for the description of Barkhausen noise in soft ferromagnetic materials. Previously, the model had been used only in the adiabatic regime of infinitely slow field ramping. We introduce finite driving rates and analyze the scaling of event sizes and durations for different regimes of the driving rate. Coexistence of intermittency, with non-trivial scaling laws, and finite-velocity interface motion is observed for high enough driving rates. Power spectra show a decay ∼ω−t\sim \omega^{-t}, with t<2t<2 for finite driving rates, revealing the influence of the internal structure of avalanches.Comment: 7 pages, 6 figures, RevTeX, final version to be published in Phys. Rev.

    The impact of estimator choice: Disagreement in clustering solutions across K estimators for Bayesian analysis of population genetic structure across a wide range of empirical data sets

    Get PDF
    The software program STRUCTURE is one of the most cited tools for determining population structure. To infer the optimal number of clusters from STRUCTURE out- put, the ΔK method is often applied. However, a recent study relying on simulated microsatellite data suggested that this method has a downward bias in its estimation of K and is sensitive to uneven sampling. If this finding holds for empirical data sets, conclusions about the scale of gene flow may have to be revised for a large number of studies. To determine the impact of method choice, we applied recently described es- timators of K to re-estimate genetic structure in 41 empirical microsatellite data sets; 15 from a broad range of taxa and 26 from one phylogenetic group, coral. We com- pared alternative estimates of K (Puechmaille statistics) with traditional (ΔK and pos- terior probability) estimates and found widespread disagreement of estimators across data sets. Thus, one estimator alone is insufficient for determining the optimal num- ber of clusters; this was regardless of study organism or evenness of sampling scheme. Subsequent analysis of molecular variance (AMOVA) did not necessarily clarify which clustering solution was best. To better infer population structure, we suggest a com- bination of visual inspection of STRUCTURE plots and calculation of the alternative estimators at various thresholds in addition to ΔK. Disagreement between traditional and recent estimators may have important biological implications, such as previously unrecognized population structure, as was the case for many studies reanalysed here
    • …
    corecore